Code: 20BS1301

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

NUMERICAL AND STATISTICAL METHODS (Common for CIVIL, ME)

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

									BL	СО	Max.	
										DL		Marks
UNIT-I												
1	a)	Find the smallest positive root of								L3	CO2	7 M
		$x^3 - x^2 - 1 = 0$ up to 2^{nd} decimal										
		accuracy using Bisection method.										
	b)	Find the missing values in the following								L3	CO2	7 M
		table.										
			Х	0	5	10	15	20	25			
			Y	6	10		17		31			
	OR											
2	a)	Find the value of the function and slope at L3 CO2 7									7 M	
		x = 1.5 using Lagranges interpolation of										
		the following data.										
				X	0	-	1	2				
				У	1	/ 	2	5				
b) Prove that $1 + \mu^2 \delta^2 = (1 + \frac{1}{2}\delta^2)^2$ L2 C								CO1	7 M			
	Page 1 of 4											

Max. Marks: 70

		UNIT-II								
3	a)	Using Simpson's 3/8 rule evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing the range into 6 equal parts. Compare the numerical value with the exact value.	L3	CO2	7 M					
	b)	Compute $f'(x)$ at x=16 from the following table using Newton's Forward interpolation formula. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L4	CO4	7 M					
OR										
4	fine	ply the Runge-Kutta fourth order method to d $y(0.2)$ and $y(0.4)$ for the differential nation $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$	L3	CO2	14 M					
		UNIT-III								
5	a)	Find the constant 'k' such that $f(x) = \begin{cases} kx^2, & 0 < x < 3\\ 0, & otherwise \end{cases}$ Determine (i) k (ii)P(1 < X < 2)	L3	CO3	7 M					
	b)	20% of the items produced from a goods factory are defective . If we choose 5 items randomly then find the probability of i) None is defective ii) One is defective iii) $P(1 < X < 4)$	L3	CO3	7 M					
	I	OR	<u> </u>	<u> </u>						

6	a)	The average no. of phone calls per minute	L3	CO3	7 M			
0	<i>a)</i>		LJ	005	/ 111			
		coming into a switch board between 2 P.M						
		& 4 P.M is 2.5. Determine the probability						
		during 1 particular minute. There will be						
		i) 4 are fewer calls ii) More than 6 calls						
	b)	The marks obtained in statistics in a certain	L3	CO3	7 M			
		examination found to be normally						
		distributed. If the 15% of the students got						
		≥ 60 marks, 40% of the students got< 30						
		marks. Assuming the distribution to be						
		normal, find the mean and standard						
		deviation.						
UNIT-IV								
7	a)	Write the Procedure for Testing of	L2	CO5	7 M			
		Hypothesis.						
	b)	The means of simple samples of sizes 1000	L4	CO5	7 M			
		and 2000 are 67.5 and 68.0 cm. respectively.						
		Can the samples be regarded as drawn from						
		the same population of standard deviation						
		2.5 cm.						
	<u> </u>	OR	<u> </u>	<u> </u>				
8	a)	An ambulance service claims that it takes on	L3	CO5	7 M			
		the average less than 10 minutes to reach its						
		destination in emergency calls. A sample of						
		36 calls has a mean of 11 minutes and the						
		variance of 16 minutes. Test the claim at						
		0.05 level of significance.						

	b)	Random samples of 400 men and 600	L4	CO5	7 M
		women were asked whether they would like			
		to have a flyover near their residence. 200			
		men and 325 women were in favour of the			
		proposal. Test the hypothesis that			
		proportions of men and women in favour of			
		the proposal are same at 5% level.			
		UNIT-V			
9	a)	Write the characteristics of student	L3	CO5	7 M
		t-distribution. Find the value of 'k' for a			
		random sample of size 24 from a normal			
		distribution is such that			
		P $(-2.069 < t < k) = 0.965$			
	b)	A process for making certain ball bearings is	L4	CO5	7 M
		under control if the diameters of the bearing			
		have a mean of 0.5 cm. If a random sample			
		of 10 of these bearings has a mean diameter			
		of 0.5060cm. and S.D. of 0.0040cm is the			
		process under control.			
	-	OR			
10		e time taken by workers in performing a job	L4	CO5	14 M
	by 2	Method-I and Method-II is given below.			
		Method-I 20 16 26 27 23 22 -			
		Method-II 27 33 42 35 32 34 38 the data show that the variances of time			
		the data show that the variances of time			
		tribution from population from which these			
	san	nples are drawn do not differ significantly.			